Motion control of an AUV using a neural network adaptive controller
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, J.-H. | - |
dc.contributor.author | Lee, P.-M. | - |
dc.contributor.author | Lee, S.-J. | - |
dc.date.accessioned | 2023-12-22T09:31:02Z | - |
dc.date.available | 2023-12-22T09:31:02Z | - |
dc.date.issued | 2002 | - |
dc.identifier.issn | 1756-0543 | - |
dc.identifier.uri | https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/9154 | - |
dc.description.abstract | This paper presents a neural network adaptive controller for autonomous underwater vehicles (AUVs). A linearly parameterized neural network (LPNN) is used to approximate the nonlinear uncertainties of AUVs’ dynamics, where the basis function vector of LPNN is constructed according to the physical properties of AUVs. A sliding mode control scheme is adopted to attenuate the effects of network’s reconstruction errors and disturbances in AUV’s dynamics. The asymptotic convergence of AUV’s tracking errors and the stability of the presented control system are guaranteed on the basis of Lyapunov theory. Numerical simulation studies for motion control of an AUV are performed to illustrate the effectiveness of the proposed controller. ? 2002 IEEE. | - |
dc.format.extent | 5 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Society for Underwater Technology | - |
dc.title | Motion control of an AUV using a neural network adaptive controller | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1109/ut.2002.1002429 | - |
dc.identifier.scopusid | 2-s2.0-84949440007 | - |
dc.identifier.bibliographicCitation | Underwater Technology, v.2002-January, pp 217 - 221 | - |
dc.citation.title | Underwater Technology | - |
dc.citation.volume | 2002-January | - |
dc.citation.startPage | 217 | - |
dc.citation.endPage | 221 | - |
dc.type.docType | Conference Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Autonomous underwater vehicles | - |
dc.subject.keywordPlus | Control theory | - |
dc.subject.keywordPlus | Controllers | - |
dc.subject.keywordPlus | Motion control | - |
dc.subject.keywordPlus | Neural networks | - |
dc.subject.keywordPlus | Sliding mode control | - |
dc.subject.keywordPlus | Adaptive Control | - |
dc.subject.keywordPlus | Asymptotic convergence | - |
dc.subject.keywordPlus | Autonomous underwater vehicles (AUVs) | - |
dc.subject.keywordPlus | AUVs | - |
dc.subject.keywordPlus | Functional approximation | - |
dc.subject.keywordPlus | Linearly parameterized neural networks | - |
dc.subject.keywordPlus | Nonlinear uncertainties | - |
dc.subject.keywordPlus | Numerical simulation studies | - |
dc.subject.keywordPlus | Adaptive control systems | - |
dc.subject.keywordAuthor | Adaptive control | - |
dc.subject.keywordAuthor | AUVs | - |
dc.subject.keywordAuthor | Functional approximation | - |
dc.subject.keywordAuthor | Neural network | - |
dc.subject.keywordAuthor | Sliding mode control | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(34103) 대전광역시 유성구 유성대로1312번길 32042-866-3114
COPYRIGHT 2021 BY KOREA RESEARCH INSTITUTE OF SHIPS & OCEAN ENGINEERING. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.