Detailed Information

Cited 0 time in webofscience Cited 34 time in scopus
Metadata Downloads

Fully coupled BEM-FEM analysis for ship hydroelasticity in waves

Authors
Kim, K.-H.Bang, J.-S.Kim, J.-H.Kim, Y.Kim, S.-J.Kim, Y.
Issue Date
2013
Keywords
Direct time integration; Finite element method; Fully coupled analysis; Rankine panel method; Ship hydroelasticity
Citation
Marine Structures, v.33, pp 71 - 99
Pages
29
Journal Title
Marine Structures
Volume
33
Start Page
71
End Page
99
URI
https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/997
DOI
10.1016/j.marstruc.2013.04.004
ISSN
0951-8339
1873-4170
Abstract
This paper considers the problem of ship hydroelasticity, which is an important technical issue in the design of ultra-large vessels. For the analysis of fluid-structure interaction problems, a partitioned method is applied. The fluid domain surrounding a flexible body is solved using a B-spline Rankine panel method, and the structural domain is handled with a three-dimensional finite element method. The two distinct methods are fully coupled in the time domain by using an implicit iterative scheme. The numerical results of natural frequency and the motion responses of simple and segmented barges are computed to validate the present method through comparisons with experimental and numerical results. This study extends to the application to two real ships, 6500 TEU and 10,000 TEU containerships, for more validation and also observation on the practicality of the present method. Based on this study, it is found that the present method provides reliable solutions to linear ship hydroelasticity problems. ? 2013 Elsevier Ltd.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Kyong-Hwan photo

Kim, Kyong-Hwan
친환경해양개발연구본부
Read more

Altmetrics

Total Views & Downloads

BROWSE