Detailed Information

Cited 0 time in webofscience Cited 20 time in scopus
Metadata Downloads

A collision avoidance behavior model for crowd simulation based on psychological findings

Full metadata record
DC Field Value Language
dc.contributor.authorPark, J.H.-
dc.contributor.authorRojas, F.A.-
dc.contributor.authorYang, H.S.-
dc.date.accessioned2021-08-03T05:42:22Z-
dc.date.available2021-08-03T05:42:22Z-
dc.date.issued2013-
dc.identifier.issn1546-4261-
dc.identifier.issn1546-427X-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/990-
dc.description.abstractThis paper proposes a collision avoidance behavior model for crowd simulation based on psychological findings of human behaviors such as gaze movement angle (GMA), side stepping, gait motion, and personal reaction bubble to have better results in crowd simulation. By calculating the GMA between agents, collision can be predicted and avoided without knowing the exact trajectories of the agents. The proposed model consists of four phases: (1) GMA-based collision prediction for mid/long range by using speed-variant information process space, (2) collision avoidance steering, (3) gait-based locomotion generation, and (4) space keeping based on personal reaction bubble. The effectiveness of the proposed speed-variant information process space was tested on various types of agent flows with different densities. The total loss of kinetic energy accumulated during an agent's movement and the ratio of the length of the path actually traveled to the length of the original path are used as key metrics to figure out the features between the different types of flows. Finally, examples of tuning the parameters with well-known fundamental diagrams are presented. Copyright ? 2013 John Wiley & Sons, Ltd.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.titleA collision avoidance behavior model for crowd simulation based on psychological findings-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1002/cav.1504-
dc.identifier.scopusid2-s2.0-84877860213-
dc.identifier.bibliographicCitationComputer Animation and Virtual Worlds, v.24, no.3-4, pp 173 - 183-
dc.citation.titleComputer Animation and Virtual Worlds-
dc.citation.volume24-
dc.citation.number3-4-
dc.citation.startPage173-
dc.citation.endPage183-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusCrowd Simulation-
dc.subject.keywordPlusGait motions-
dc.subject.keywordPlusGaze movements-
dc.subject.keywordPlusInformation process-
dc.subject.keywordPluspersonal reaction bubble (PRB)-
dc.subject.keywordPlusCollision avoidance-
dc.subject.keywordPlusComputer simulation-
dc.subject.keywordPlusKinetics-
dc.subject.keywordPlusBehavioral research-
dc.subject.keywordAuthorcollision avoidance-
dc.subject.keywordAuthorcrowd simulation-
dc.subject.keywordAuthorgait motion-
dc.subject.keywordAuthorgaze movement angle (GMA)-
dc.subject.keywordAuthorpersonal reaction bubble (PRB)-
dc.subject.keywordAuthorspeed-variant information process space (IPS)-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양공공디지털연구본부 > 해사디지털서비스연구센터 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jin Hyoung photo

Park, Jin Hyoung
해양공공디지털연구본부 (해사디지털서비스연구센터)
Read more

Altmetrics

Total Views & Downloads

BROWSE