Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ingestion and egestion of polystyrene microplastic fragments by the Pacific oyster, Crassostrea gigas

Authors
Choi, H.Im, D.-H.Park, Y.-H.Lee, J.-W.Yoon, S.-J.Hwang, U.-K.
Issue Date
8월-2022
Publisher
Elsevier Ltd
Keywords
Crassostrea gigas; Ingestion and egestion; Microplastic depuration; Pacific oyster; Polystyrene microplastic
Citation
Environmental Pollution, v.307
Journal Title
Environmental Pollution
Volume
307
URI
https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/9609
DOI
10.1016/j.envpol.2022.119217
ISSN
0269-7491
1873-6424
Abstract
Marine microplastics (MPs) pose a risk to human health through accumulation in maricultural organisms, particularly bivalves. Various studies have reported the presence of MP particles in Pacific oysters (Crasostrea gigas). In this study, we investigated the size-specific ingestion and egestion of polystyrene (PS) MPs by Pacific oysters. The cultivation density of C. gigas was maintained at 1 L of filtered seawater per oyster (n = 5) during the MP ingestion and egestion experiments. On exposure to 300 n/L of PS MP fragments for 7 d, 60.4% of the PS was ingested within 6 h (7.25 × 102 ± 1.36 × 102 n/indv.), and the ingestion was saturated at 12 h (1.2 × 103 ± 2.2 × 102 n/indv.) in C. gigas. The maximum MP ingestion capacity (Igmax) of a single Pacific oyster was 73.0 ± 16.3 n/g wet weight. Further, 62.9% of the PS MP particles were egested for 7 d from the saturated single C. gigas. Ingestion and egestion varied according to the PS MP size. In the case of <50 μm PS MP, ingestion rate was low but MP amount and net-ingestion efficiency was significantly higher than other PS MP sizes. In addition, egestion, egestion rate, and net-egestion efficiency for <50 μm PS MPs were significantly higher than other PS MP sizes. Therefore, smaller MPs (<50 μm) normally exhibit the highest ingestion and egestion rates; therefore, the 50?300 μm size fraction exhibited the highest residual possibility (particles >1000 μm were excluded). Additionally, considering the net-egestion efficiency, the most economical and efficient depuration period was 24 h. This study clarifies the size-specific MP accumulation in oysters, and the egestion results suggest that the potential risk of MPs to human health through the intake of maricultural products could be reduced by depuration. ? 2022
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양공공디지털연구본부 > 해사안전·환경연구센터 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Hoon photo

Choi, Hoon
해양공공디지털연구본부 (해사안전·환경연구센터)
Read more

Altmetrics

Total Views & Downloads

BROWSE