Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The Development of Regional Vessel Traffic Congestion Forecasts Using Hybrid Data from an Automatic Identification System and a Port Management Information System

Full metadata record
DC Field Value Language
dc.contributor.authorJoonbae Son-
dc.contributor.authorDong-Ham Kim-
dc.contributor.authorSang-Woong Yun-
dc.contributor.authorHye-Jin Kim-
dc.contributor.authorSewon Kim-
dc.date.accessioned2023-12-22T10:01:28Z-
dc.date.available2023-12-22T10:01:28Z-
dc.date.issued2022-12-
dc.identifier.issn2077-1312-
dc.identifier.issn2077-1312-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/9476-
dc.description.abstractThe present study proposes a new method that forecasts congestion in the area near a port by combining the automatic identification systems of ships and port management information data. The proposed method achieves 85% accuracy for one-day-long ship congestion forecasts. This accuracy level is high enough to act as a reference value for both manned and unmanned operation situations for autonomous vessels in port areas. The proposed forecast algorithm achieves 95% accuracy when used for a one-hour ship congestion forecast. However, the accuracy of the algorithm is degraded to almost half when the automatic identification system or the port management system is used independently. ? 2022 by the authors.-
dc.publisherMDPI AG-
dc.titleThe Development of Regional Vessel Traffic Congestion Forecasts Using Hybrid Data from an Automatic Identification System and a Port Management Information System-
dc.title.alternativeAIS 정보와 Port MIS 정보를 활용한 특정해역 선박 교통 혼잡도 개발-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/jmse10121956-
dc.identifier.scopusid2-s2.0-85144863632-
dc.identifier.wosid000902483500001-
dc.identifier.bibliographicCitationJournal of Marine Science and Engineering , v.10, no.20-
dc.citation.titleJournal of Marine Science and Engineering-
dc.citation.volume10-
dc.citation.number20-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaOceanography-
dc.relation.journalWebOfScienceCategoryEngineering, Marine-
dc.relation.journalWebOfScienceCategoryEngineering, Ocean-
dc.relation.journalWebOfScienceCategoryOceanography-
dc.subject.keywordAuthorautonomous vessel-
dc.subject.keywordAuthorport arrival and departure-
dc.subject.keywordAuthorport MIS (port management information system)-
dc.subject.keywordAuthorship AIS (automatic identification system)-
dc.subject.keywordAuthorvessel congestion forecast-
dc.subject.keywordAuthorvessel traffic congestion-
Files in This Item
Appears in
Collections
지능형선박연구본부 > 자율운항선박실증연구센터 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hye Jin photo

Kim, Hye Jin
지능형선박연구본부
Read more

Altmetrics

Total Views & Downloads

BROWSE