Data-driven dynamic stacking strategy for export containers in container terminals
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, H.J. | - |
dc.contributor.author | Cho, S.W. | - |
dc.contributor.author | Nanda, A. | - |
dc.contributor.author | Park, J.H. | - |
dc.date.accessioned | 2023-12-22T10:01:15Z | - |
dc.date.available | 2023-12-22T10:01:15Z | - |
dc.date.issued | 2023-03 | - |
dc.identifier.issn | 1936-6582 | - |
dc.identifier.issn | 1936-6590 | - |
dc.identifier.uri | https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/9446 | - |
dc.description.abstract | This study investigates a method for improving real-time decisions regarding the storage location of export containers while the containers are arriving. To manage the decision-making process, we propose a two module-based data-driven dynamic stacking strategy that facilitates stowage planning. Module 1 generates the Gaussian mixture model (GMM) specific to each container group for container weight classification. Module 2 implements the data-driven dynamic stacking strategy as an online algorithm to determine the storage location of an arriving container in real time. Numerical experiments were conducted using real-life data to validate the effectiveness of the proposed method compared to other alternative stacking strategies. These experiments revealed that the performance of the proposed method is robust, and therefore it can improve yard operations and container terminal competitiveness. ? 2022, The Author(s). | - |
dc.format.extent | 26 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Springer | - |
dc.title | Data-driven dynamic stacking strategy for export containers in container terminals | - |
dc.type | Article | - |
dc.publisher.location | 네덜란드 | - |
dc.identifier.doi | 10.1007/s10696-022-09457-8 | - |
dc.identifier.scopusid | 2-s2.0-85132869234 | - |
dc.identifier.wosid | 000816998700001 | - |
dc.identifier.bibliographicCitation | Flexible Services and Manufacturing Journal, v.35, no.1, pp 170 - 195 | - |
dc.citation.title | Flexible Services and Manufacturing Journal | - |
dc.citation.volume | 35 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 170 | - |
dc.citation.endPage | 195 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Operations Research & Management Science | - |
dc.relation.journalWebOfScienceCategory | Engineering, Industrial | - |
dc.relation.journalWebOfScienceCategory | Engineering, Manufacturing | - |
dc.relation.journalWebOfScienceCategory | Operations Research & Management Science | - |
dc.subject.keywordPlus | DERIVING DECISION RULES | - |
dc.subject.keywordPlus | OUTBOUND CONTAINERS | - |
dc.subject.keywordPlus | SPACE ALLOCATION | - |
dc.subject.keywordPlus | LOCATION ASSIGNMENT | - |
dc.subject.keywordPlus | OPERATIONS-RESEARCH | - |
dc.subject.keywordPlus | IMPORT CONTAINERS | - |
dc.subject.keywordPlus | SUPPORT-SYSTEM | - |
dc.subject.keywordPlus | STORAGE SPACE | - |
dc.subject.keywordPlus | TRANSSHIPMENT | - |
dc.subject.keywordPlus | MODELS | - |
dc.subject.keywordAuthor | Container stacking problem (CSP) | - |
dc.subject.keywordAuthor | Container terminals | - |
dc.subject.keywordAuthor | Gaussian mixture model (GMM) | - |
dc.subject.keywordAuthor | Machine learning | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(34103) 대전광역시 유성구 유성대로1312번길 32042-866-3114
COPYRIGHT 2021 BY KOREA RESEARCH INSTITUTE OF SHIPS & OCEAN ENGINEERING. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.