Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Data-driven dynamic stacking strategy for export containers in container terminals

Full metadata record
DC Field Value Language
dc.contributor.authorPark, H.J.-
dc.contributor.authorCho, S.W.-
dc.contributor.authorNanda, A.-
dc.contributor.authorPark, J.H.-
dc.date.accessioned2023-12-22T10:01:15Z-
dc.date.available2023-12-22T10:01:15Z-
dc.date.issued2023-03-
dc.identifier.issn1936-6582-
dc.identifier.issn1936-6590-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/9446-
dc.description.abstractThis study investigates a method for improving real-time decisions regarding the storage location of export containers while the containers are arriving. To manage the decision-making process, we propose a two module-based data-driven dynamic stacking strategy that facilitates stowage planning. Module 1 generates the Gaussian mixture model (GMM) specific to each container group for container weight classification. Module 2 implements the data-driven dynamic stacking strategy as an online algorithm to determine the storage location of an arriving container in real time. Numerical experiments were conducted using real-life data to validate the effectiveness of the proposed method compared to other alternative stacking strategies. These experiments revealed that the performance of the proposed method is robust, and therefore it can improve yard operations and container terminal competitiveness. ? 2022, The Author(s).-
dc.format.extent26-
dc.language영어-
dc.language.isoENG-
dc.publisherSpringer-
dc.titleData-driven dynamic stacking strategy for export containers in container terminals-
dc.typeArticle-
dc.publisher.location네덜란드-
dc.identifier.doi10.1007/s10696-022-09457-8-
dc.identifier.scopusid2-s2.0-85132869234-
dc.identifier.wosid000816998700001-
dc.identifier.bibliographicCitationFlexible Services and Manufacturing Journal, v.35, no.1, pp 170 - 195-
dc.citation.titleFlexible Services and Manufacturing Journal-
dc.citation.volume35-
dc.citation.number1-
dc.citation.startPage170-
dc.citation.endPage195-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaOperations Research & Management Science-
dc.relation.journalWebOfScienceCategoryEngineering, Industrial-
dc.relation.journalWebOfScienceCategoryEngineering, Manufacturing-
dc.relation.journalWebOfScienceCategoryOperations Research & Management Science-
dc.subject.keywordPlusDERIVING DECISION RULES-
dc.subject.keywordPlusOUTBOUND CONTAINERS-
dc.subject.keywordPlusSPACE ALLOCATION-
dc.subject.keywordPlusLOCATION ASSIGNMENT-
dc.subject.keywordPlusOPERATIONS-RESEARCH-
dc.subject.keywordPlusIMPORT CONTAINERS-
dc.subject.keywordPlusSUPPORT-SYSTEM-
dc.subject.keywordPlusSTORAGE SPACE-
dc.subject.keywordPlusTRANSSHIPMENT-
dc.subject.keywordPlusMODELS-
dc.subject.keywordAuthorContainer stacking problem (CSP)-
dc.subject.keywordAuthorContainer terminals-
dc.subject.keywordAuthorGaussian mixture model (GMM)-
dc.subject.keywordAuthorMachine learning-
Files in This Item
Appears in
Collections
해양공공디지털연구본부 > 해사디지털서비스연구센터 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jin Hyoung photo

Park, Jin Hyoung
해양공공디지털연구본부 (해사디지털서비스연구센터)
Read more

Altmetrics

Total Views & Downloads

BROWSE