Smooth Fitting with a Method for Determining the Regularization Parameter under the Genetic Programming Algorithm
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, K.H. | - |
dc.contributor.author | Yeun, Y.S. | - |
dc.contributor.author | Yang, Y.S. | - |
dc.date.accessioned | 2023-12-22T09:31:10Z | - |
dc.date.available | 2023-12-22T09:31:10Z | - |
dc.date.issued | 2000 | - |
dc.identifier.issn | 0000-0000 | - |
dc.identifier.uri | https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/9179 | - |
dc.description.abstract | This paper deals with the smooth fitting problem under the genetic programming algorithm(GP). To reduce the computational cost required for evaluating the fitness value of GP trees, numerical weights of GP trees are estimated by adopting both linear associative memories and the Hook & Jeeves method. The quality of smooth fitting is critically dependent on the choice of the regularization parameter. So, we present a novel method for choosing regularization parameter. Two numerical examples are given with the comparison of generalized cross-validation B-splines. | - |
dc.format.extent | 6 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.title | Smooth Fitting with a Method for Determining the Regularization Parameter under the Genetic Programming Algorithm | - |
dc.type | Article | - |
dc.identifier.scopusid | 2-s2.0-1642396650 | - |
dc.identifier.bibliographicCitation | Proceedings of the Joint Conference on Information Sciences, v.5, no.1, pp 1056 - 1061 | - |
dc.citation.title | Proceedings of the Joint Conference on Information Sciences | - |
dc.citation.volume | 5 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 1056 | - |
dc.citation.endPage | 1061 | - |
dc.type.docType | Conference Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Approximation theory | - |
dc.subject.keywordPlus | Evaluation | - |
dc.subject.keywordPlus | Genetic algorithms | - |
dc.subject.keywordPlus | Heuristic methods | - |
dc.subject.keywordPlus | Neural networks | - |
dc.subject.keywordPlus | Numerical analysis | - |
dc.subject.keywordPlus | Problem solving | - |
dc.subject.keywordPlus | Genetic programming (GP) | - |
dc.subject.keywordPlus | Linear associative memories (LAM) | - |
dc.subject.keywordPlus | Smooth fitting | - |
dc.subject.keywordPlus | Curve fitting | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(34103) 대전광역시 유성구 유성대로1312번길 32042-866-3114
COPYRIGHT 2021 BY KOREA RESEARCH INSTITUTE OF SHIPS & OCEAN ENGINEERING. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.