Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effect of wave amplitude on turbulent flow in a wavy channel by direct numerical simulation

Authors
Yoon, H. S.El-Samni, O. A.Huynh, A. T.Chun, H. H.Kim, H. J.Pham, A. H.Park, I. R.
Issue Date
7월-2009
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Wavy surface; Reverse flow; Separation; Drag; Immersed boundary method
Citation
OCEAN ENGINEERING, v.36, no.9-10, pp 697 - 707
Pages
11
Journal Title
OCEAN ENGINEERING
Volume
36
Number
9-10
Start Page
697
End Page
707
URI
https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/8942
DOI
10.1016/j.oceaneng.2009.03.012
ISSN
0029-8018
Abstract
The present study numerically investigates the characteristics of three-dimensional turbulent flow in a wavy channel. For the purpose of a careful observation of the effect of the wave amplitude on the turbulent flow, numerical simulations are performed at a various range of the wave amplitude to wavelength ratio (0.01 <= alpha/lambda <= 0.05), where the wavelength is fixed with the same value of the mean channel height (H). The immersed boundary method is used to handle the wavy surface in a rectangular grid system, using the finite volume method. The Reynolds number (Re = UbH/nu) based on the bulk velocity (U-b) is fixed at 6760. The present computational results for a wavy surface are well compared with those of references. When alpha/lambda = 0.02, the small recirculating flow occurs near the trough at the instant, but the mean reverse flow is not observed. In the mean flow field, the reverse flow appears from alpha/lambda = 0.03 among the wave amplitude considered in this study. The domain of the mean reverse flow defined by the locations of separation and reattachment depends strongly on the wave amplitude. The pressure drag coefficient augments with increasing the wave amplitude. The friction drag coefficient shows the increase and decrease behavior according to the wave amplitude. The quantitative information about the flow variables such as the distribution of pressure and shear stress on the wavy surface is highlighted. (C) 2009 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE