Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Developing an efficient landmark for autonomous docking tasks of underwater robots

Full metadata record
DC Field Value Language
dc.contributor.authorHan, K.M.-
dc.contributor.authorLee, Y.-
dc.contributor.authorChoi, H.-T.-
dc.date.accessioned2023-12-22T09:00:51Z-
dc.date.available2023-12-22T09:00:51Z-
dc.date.issued2012-
dc.identifier.issn0000-0000-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/8803-
dc.description.abstractThis paper proposes an unobtrusive and flexible artificial landmark for the underwater robot homing problem. We designed modified Self-Similar Landmark (SSL) which reveals two different kinds of features: 1) a self-similar feature at long distances and 2) corner features at short distances from the target. That is, the self similarity of the landmark attracts a robot until it approaches close to the landmark. When the robot approaches to the dock and the corner features of the target board become conspicous, the proposed framework starts estimating 3D poses of the robot with respect to the target. Thus, proposed framework extracts currently available information from the target board and adaptively uses it in order to find an optimal docking trajectory. Our method has been tested in the underwater environment, and we have observed a greate possibility of the proposed landmark as a passive docking target for underwater robots. Copyright ? 2012 IEEE.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.titleDeveloping an efficient landmark for autonomous docking tasks of underwater robots-
dc.typeArticle-
dc.identifier.doi10.1109/URAI.2012.6463016-
dc.identifier.scopusid2-s2.0-84874730121-
dc.identifier.bibliographicCitation2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2012, pp 357 - 361-
dc.citation.title2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2012-
dc.citation.startPage357-
dc.citation.endPage361-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusArtificial landmark-
dc.subject.keywordPlusAutonomous docking-
dc.subject.keywordPlusCorner feature-
dc.subject.keywordPlusLandmark detection-
dc.subject.keywordPlusPose estimation-
dc.subject.keywordPlusSelf-similar-
dc.subject.keywordPlusSelf-similarities-
dc.subject.keywordPlusUnderwater environments-
dc.subject.keywordPlusUnderwater robots-
dc.subject.keywordPlusArtificial intelligence-
dc.subject.keywordPlusAutonomous underwater vehicles-
dc.subject.keywordPlusDocking-
dc.subject.keywordPlusRobots-
dc.subject.keywordPlusComputer vision-
dc.subject.keywordAuthorAutonomous docking-
dc.subject.keywordAuthorLandmark detection-
dc.subject.keywordAuthorPose estimation-
dc.subject.keywordAuthorUnderwater robot vision-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Hyun Taek photo

Choi, Hyun Taek
지능형선박연구본부
Read more

Altmetrics

Total Views & Downloads

BROWSE