Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Simulations of incompressible fluid Flow-Elastic Structure Interactions by a coupled fully lagrangian solver

Authors
Hwang, S.Khayyer, A.Gotoh, H.Park, J.-C.
Issue Date
2015
Publisher
International Society of Offshore and Polar Engineers
Keywords
Fluid impact loads; Fluid-Structure Interaction; Lagrangian method; Moving Particle Simulation; Wet-drop simulation
Citation
Proceedings of the International Offshore and Polar Engineering Conference, v.2015-January, pp 1247 - 1250
Pages
4
Journal Title
Proceedings of the International Offshore and Polar Engineering Conference
Volume
2015-January
Start Page
1247
End Page
1250
URI
https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/8655
ISSN
1098-6189
Abstract
This paper presents the simulations of a set of FSI (Fluid-Structure Interaction) problems encountered in ocean engineering by a novel fully-Lagrangian solver corresponding to incompressible fluid flows and elastic structures (Hwang et al., 2014). The fluid and structure models are founded on enhanced versions of Moving Particle Simulation (MPS) method (Koshizuka et al., 1996) and elastic structure (Kondo et al., 2007) model. A distinctive feature of this study is that the simulation method does not include any artificial stabilizing term either in the structure model or the fluid one (Hwang et al., 2014). The fluid-structure coupling is performed in a mathematically- and physically-consistent manner by careful attention to the mathematical concept of projection-based particle methods (i.e. Helmholtz-Hodge decomposition). The accuracy and effectiveness of this novel coupling algorithm is verified by qualitatively and quantitatively evaluating the volume conservation at fluid-structure boundaries. The coupled fluid-structure model is applied to numerical simulations of FSI such as sloshing flow with bottom clamped elastic baffle (Idelsohn et al., 2008) and the impact of an aluminum beam on undisturbed water. Copyright ? 2015 by the International Society of Offshore and Polar Engineers (ISOPE).
Files in This Item
There are no files associated with this item.
Appears in
Collections
친환경해양개발연구본부 > 심해공학연구센터 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE