A method for object detection using point cloud measurement in the sea environment
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, S.J. | - |
dc.contributor.author | Moon, Y.S. | - |
dc.contributor.author | Ko, N.Y. | - |
dc.contributor.author | Choi, H.-T. | - |
dc.contributor.author | Lee, J.-M. | - |
dc.date.accessioned | 2023-12-22T08:30:37Z | - |
dc.date.available | 2023-12-22T08:30:37Z | - |
dc.date.issued | 2017 | - |
dc.identifier.issn | 0000-0000 | - |
dc.identifier.uri | https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/8475 | - |
dc.description.abstract | This paper describes a method for detection of object using 3D point cloud measurement in the sea environment. The method employs RBNN clustering method and using a 3D Lidar, mono-vision and stereo-vision cameras, and radar vision system. A radially based nearest neighbors (RBNN) clustering technique is adopted to perform object detection on 3D point cloud clustering. RBNN is constructing clusters based on the radius or distance parameter. In RBNN, each 3D point searches its nearest neighbor (NN) under some radius threshold value and combines all the neighboring points as a group or cluster. The experimental results verify the performance of RBNN to detect objects from 3D point cloud measurements in sea environment. ? 2017 IEEE. | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | A method for object detection using point cloud measurement in the sea environment | - |
dc.type | Article | - |
dc.identifier.doi | 10.1109/UT.2017.7890290 | - |
dc.identifier.scopusid | 2-s2.0-85018180944 | - |
dc.identifier.bibliographicCitation | 2017 IEEE OES International Symposium on Underwater Technology, UT 2017 | - |
dc.citation.title | 2017 IEEE OES International Symposium on Underwater Technology, UT 2017 | - |
dc.type.docType | Conference Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Cluster analysis | - |
dc.subject.keywordPlus | Nearest neighbor search | - |
dc.subject.keywordPlus | Object recognition | - |
dc.subject.keywordPlus | Optical radar | - |
dc.subject.keywordPlus | Stereo image processing | - |
dc.subject.keywordPlus | Stereo vision | - |
dc.subject.keywordPlus | 3D point cloud | - |
dc.subject.keywordPlus | Clustering | - |
dc.subject.keywordPlus | Clustering methods | - |
dc.subject.keywordPlus | Clustering techniques | - |
dc.subject.keywordPlus | Distance parameter | - |
dc.subject.keywordPlus | Neighboring point | - |
dc.subject.keywordPlus | Quanergy M8-1 | - |
dc.subject.keywordPlus | RBNN | - |
dc.subject.keywordPlus | Object detection | - |
dc.subject.keywordAuthor | 3D point cloud | - |
dc.subject.keywordAuthor | Clustering | - |
dc.subject.keywordAuthor | Quanergy M8-1 | - |
dc.subject.keywordAuthor | RBNN | - |
dc.subject.keywordAuthor | USV | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(34103) 대전광역시 유성구 유성대로1312번길 32042-866-3114
COPYRIGHT 2021 BY KOREA RESEARCH INSTITUTE OF SHIPS & OCEAN ENGINEERING. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.