Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

AUV SLAM using forward/downward looking cameras and artificial landmarks

Full metadata record
DC Field Value Language
dc.contributor.authorJung, J.-
dc.contributor.authorLee, Y.-
dc.contributor.authorKim, D.-
dc.contributor.authorLee, D.-
dc.contributor.authorMyung, H.-
dc.contributor.authorChoi, H.-T.-
dc.date.accessioned2023-12-22T08:30:37Z-
dc.date.available2023-12-22T08:30:37Z-
dc.date.issued2017-
dc.identifier.issn0000-0000-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/8474-
dc.description.abstractAutonomous underwater vehicles (AUVs) are usually equipped with one or more optical cameras to obtain visual data of underwater environments. The camera can also be used to estimate the AUV's pose information, along with various navigation sensors such as inertial measurement unit (IMU), Doppler velocity log (DVL), depth sensor, and so on. In this paper, we propose a vision-based simultaneous localization and mapping (SLAM) of AUVs, where underwater artificial landmarks are used to help visual sensing of forward and downward looking cameras. Three types of landmarks are introduced and their detection algorithms are organized in a framework of conventional extended Kalman filter (EKF) SLAM to estimate both robot and landmark states. The proposed method is validated by an experiment performed in a engineering basin. Since DVL suffers from noises in a real ocean environment, we generated synthetic noisy data based on the real sensor data. With this data we verify that the proposed SLAM approach can recover from the erroneous dead reckoning position. ? 2017 IEEE.-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleAUV SLAM using forward/downward looking cameras and artificial landmarks-
dc.typeArticle-
dc.identifier.doi10.1109/UT.2017.7890307-
dc.identifier.scopusid2-s2.0-85018189185-
dc.identifier.bibliographicCitation2017 IEEE OES International Symposium on Underwater Technology, UT 2017-
dc.citation.title2017 IEEE OES International Symposium on Underwater Technology, UT 2017-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusCameras-
dc.subject.keywordPlusExtended Kalman filters-
dc.subject.keywordPlusKalman filters-
dc.subject.keywordPlusMapping-
dc.subject.keywordPlusRobotics-
dc.subject.keywordPlusRobots-
dc.subject.keywordPlusUnits of measurement-
dc.subject.keywordPlusVision-
dc.subject.keywordPlusArtificial landmark-
dc.subject.keywordPlusAutonomous underwater vehicles (AUVs)-
dc.subject.keywordPlusDetection algorithm-
dc.subject.keywordPlusDoppler velocity logs-
dc.subject.keywordPlusInertial measurement unit-
dc.subject.keywordPlusSimultaneous localization and mapping-
dc.subject.keywordPlusUnderwater environments-
dc.subject.keywordPlusVision based simultaneous localization and mappings-
dc.subject.keywordPlusAutonomous underwater vehicles-
dc.subject.keywordAuthorAUV-
dc.subject.keywordAuthorextended Kalman filter-
dc.subject.keywordAuthorsimultaneous localization and mapping-
dc.subject.keywordAuthorvision-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Hyun Taek photo

Choi, Hyun Taek
지능형선박연구본부
Read more

Altmetrics

Total Views & Downloads

BROWSE