A deep learning enabled field-portable cell analyzer
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seo, D. | - |
dc.contributor.author | Shin, S. | - |
dc.contributor.author | Yang, H. | - |
dc.contributor.author | Myeong, S. | - |
dc.contributor.author | Han, E. | - |
dc.contributor.author | Oh, S. | - |
dc.contributor.author | Lee, M. | - |
dc.contributor.author | Seo, S. | - |
dc.date.accessioned | 2023-12-22T08:01:50Z | - |
dc.date.available | 2023-12-22T08:01:50Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 0000-0000 | - |
dc.identifier.uri | https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/8369 | - |
dc.description.abstract | We demonstrate a deep learning enabled low-cost cell analyzer, Cellytics, with custom developed cell chip, which performs various cell analysis including counting, differentiation, size measurement, viability test, and eco-toxicity evaluation. Cellytics enables various cell analysis without employing any traditional optical microscope elements such as lenses and focusing procedures. Therefore, this analyzer has the advantage of wide field of view and cost-effective fabrication approach. In this paper, we presents the results of blood cell analysis and micro-algae viability test using Cellytics. Additionally, potential use in HIV diagnostics of this device would be also described by combining deep learning algorithm of Google Inception. ? 2019 CBMS-0001. | - |
dc.format.extent | 2 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Chemical and Biological Microsystems Society | - |
dc.title | A deep learning enabled field-portable cell analyzer | - |
dc.type | Article | - |
dc.identifier.scopusid | 2-s2.0-85094960900 | - |
dc.identifier.bibliographicCitation | 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019, pp 1397 - 1398 | - |
dc.citation.title | 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019 | - |
dc.citation.startPage | 1397 | - |
dc.citation.endPage | 1398 | - |
dc.type.docType | Conference Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Biochips | - |
dc.subject.keywordPlus | Blood | - |
dc.subject.keywordPlus | Cost benefit analysis | - |
dc.subject.keywordPlus | Cost effectiveness | - |
dc.subject.keywordPlus | Learning algorithms | - |
dc.subject.keywordPlus | Lenses | - |
dc.subject.keywordPlus | Blood cells | - |
dc.subject.keywordPlus | Cell analysis | - |
dc.subject.keywordPlus | Cell chips | - |
dc.subject.keywordPlus | Cost-effective fabrication | - |
dc.subject.keywordPlus | Ecotoxicity | - |
dc.subject.keywordPlus | Micro-algae | - |
dc.subject.keywordPlus | Size measurements | - |
dc.subject.keywordPlus | Wide field of view | - |
dc.subject.keywordPlus | Deep learning | - |
dc.subject.keywordAuthor | Cell analysis | - |
dc.subject.keywordAuthor | Cell analyzer | - |
dc.subject.keywordAuthor | Cellytics | - |
dc.subject.keywordAuthor | Deep learning | - |
dc.subject.keywordAuthor | LSIT | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(34103) 대전광역시 유성구 유성대로1312번길 32042-866-3114
COPYRIGHT 2021 BY KOREA RESEARCH INSTITUTE OF SHIPS & OCEAN ENGINEERING. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.