Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Research on the Automatic Classification of Ship’s Navigational Status

Full metadata record
DC Field Value Language
dc.contributor.authorOh, J.-
dc.contributor.authorKim, H.-J.-
dc.contributor.authorPark, S.-
dc.date.accessioned2023-12-22T08:01:39Z-
dc.date.available2023-12-22T08:01:39Z-
dc.date.issued2020-
dc.identifier.issn1876-1100-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/8340-
dc.description.abstractMaritime traffic analysis has been attracted increasing attention due to their importance for the safety and efficiency of maritime operations. The first step of maritime traffic analysis is the identification of ships’ navigational status, and various analysis tasks are started based on the status information. It should be considered the complex traffic characteristics of the harbor and ships. These tasks depend on the expert’s experiences, however, it becomes difficult to classify manually as the amount of traffic volume increases. Therefore, in this paper, we proposed a new model to identify the ship’s navigational status automatically. The proposed method generated traffic pattern model using accumulated AIS trajectories and then classified using the clustering algorithm. This method based on semi-supervised machine learning and the proposed clustering method using the pre-classified dataset. Finally, we review experimental results using the actual trajectory data to verify the feasibility of the proposed method. ? 2020, Springer Nature Singapore Pte Ltd.-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisherSpringer-
dc.titleResearch on the Automatic Classification of Ship’s Navigational Status-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1007/978-981-13-9341-9_7-
dc.identifier.scopusid2-s2.0-85076849799-
dc.identifier.bibliographicCitationLecture Notes in Electrical Engineering, v.536 LNEE, pp 36 - 41-
dc.citation.titleLecture Notes in Electrical Engineering-
dc.citation.volume536 LNEE-
dc.citation.startPage36-
dc.citation.endPage41-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusArtificial intelligence-
dc.subject.keywordPlusCluster analysis-
dc.subject.keywordPlusLearning systems-
dc.subject.keywordPlusMachine learning-
dc.subject.keywordPlusNavigation-
dc.subject.keywordPlusShips-
dc.subject.keywordPlusSupervised learning-
dc.subject.keywordPlusUbiquitous computing-
dc.subject.keywordPlusAutomatic classification-
dc.subject.keywordPlusClustering-
dc.subject.keywordPlusClustering methods-
dc.subject.keywordPlusMaritime operation-
dc.subject.keywordPlusNavigational status-
dc.subject.keywordPlusSafety and efficiencies-
dc.subject.keywordPlusStatus informations-
dc.subject.keywordPlusTraffic characteristics-
dc.subject.keywordPlusClustering algorithms-
dc.subject.keywordAuthorAIS-
dc.subject.keywordAuthorClustering-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorNavigational status-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양공공디지털연구본부 > 해사디지털서비스연구센터 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Se kil photo

Park, Se kil
해양공공디지털연구본부 (해사디지털서비스연구센터)
Read more

Altmetrics

Total Views & Downloads

BROWSE