Detailed Information

Cited 5 time in webofscience Cited 5 time in scopus
Metadata Downloads

Big data analysis of hollow fiber direct contact membrane distillation (HFDCMD) for simulation-based empirical analysis

Full metadata record
DC Field Value Language
dc.contributor.authorKi, Seo Jin-
dc.contributor.authorKim, Hyeon-Ju-
dc.contributor.authorKim, Albert S.-
dc.date.accessioned2021-08-03T04:44:02Z-
dc.date.available2021-08-03T04:44:02Z-
dc.date.issued2015-01-01-
dc.identifier.issn0011-9164-
dc.identifier.issn1873-4464-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/782-
dc.description.abstractA large number of hollow fiber direct contact membrane distillation (HFDCMD) are simulated using previously developed software, hfdcmd, i.e., a module of an environmental software package (EnPhySoft). Of 11,059,200 cases, 7,453,717 cases are found to be physically meaningful for practical applications. The self-organizing map (SOM) and multiple linear regression (MLR) methods were used to statistically analyze the big data. Using the raw data, physical and dimensionless data sets were prepared with specific formats: the former identifies the most significant parameters, and the latter compares relative importance between input parameters. SOM analysis did not provide transparent dependencies between inputs and/or outputs of HFDCMD: instead, it helped categorize parameters into groups of similar characteristics. Using MLR, we found that macroscopic quantities such as temperature and radii of lumen and shell sides were more influential on the MD performance than microscopic quantities such as pore size and membrane length. A rough (order-of-magnitude) prediction for heat and mass fluxes requires only four key input parameters. (C) 2014 Elsevier B.V. All rights reserved.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER-
dc.titleBig data analysis of hollow fiber direct contact membrane distillation (HFDCMD) for simulation-based empirical analysis-
dc.typeArticle-
dc.publisher.location네덜란드-
dc.identifier.doi10.1016/j.desal.2014.10.008-
dc.identifier.scopusid2-s2.0-84908582443-
dc.identifier.wosid000346211900006-
dc.identifier.bibliographicCitationDESALINATION, v.355, pp 56 - 67-
dc.citation.titleDESALINATION-
dc.citation.volume355-
dc.citation.startPage56-
dc.citation.endPage67-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaWater Resources-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryWater Resources-
dc.subject.keywordPlusPORE-SIZE DISTRIBUTION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusFLUX-
dc.subject.keywordAuthorHollow fiber direct contact membrane distillation-
dc.subject.keywordAuthorEnPhySoft simulation software-
dc.subject.keywordAuthorSelf-organizing map-
dc.subject.keywordAuthorMultiple linear regression-
dc.subject.keywordAuthorBig data analysis-
dc.subject.keywordAuthorMulti-physical phenomena-
Files in This Item
There are no files associated with this item.
Appears in
Collections
친환경해양개발연구본부 > 해수에너지연구센터 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyeon Ju photo

Kim, Hyeon Ju
친환경해양개발연구본부 (해수에너지연구센터)
Read more

Altmetrics

Total Views & Downloads

BROWSE