Detailed Information

Cited 3 time in webofscience Cited 4 time in scopus
Metadata Downloads

GSR-TDMA: A Geometric Spatial Reuse-Time Division Multiple Access MAC Protocol for Multihop Underwater Acoustic Sensor Networks

Authors
Yun, ChanghoLim, Yong-Kon
Issue Date
2016
Publisher
HINDAWI LTD
Keywords
Medium access control; TDMA; propagation delay; spatio-temporal uncertainty; Underwater acoustic sensor networks
Citation
JOURNAL OF SENSORS, v.2016
Journal Title
JOURNAL OF SENSORS
Volume
2016
URI
https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/744
DOI
10.1155/2016/6024610
ISSN
1687-725X
1687-7268
Abstract
The nonnegligible propagation delay of acoustic signals causes spatiotemporal uncertainty that occasionally enables simultaneous, collision-free packet transmission among underwater nodes (UNs). These transmissions can be handled by efficiently managing the channel access of the UNs in the data-link layer. To this end, Geometric Spatial Reuse-TDMA (GSR-TDMA), a new TDMA-based MAC protocol, is designed for use in centralized, multihop underwater acoustic sensor networks (UASNs), and in this case all UNs are periodically scheduled after determining a geometric map according to the information on their location. The scheduling strategy increases the number of UNs that send packets coincidentally via two subscheduling configurations (i.e., interhop and intrahop scheduling). Extensive simulations are used to investigate the reception success rate (RSR) and the multihop delay (MHD) of GSR-TDMA, and the results are compared to those of previous approaches, including C-MAC and HSR-TDMA. GSR-TDMA outperforms C-MAC; the RSR of GSR-TDMA is 15% higher than that of C-MAC, and the MHD of GSR-TDMA is 30% lower than that of C-MAC at the most. In addition, GSR-TDMA provides even better performance improvements over HSR-TDMA; the RSR of GSR-TDMA is 50% higher than that of HSR-TDMA, and the MHD of GSR-TDMA is an order of 10 2 lower than that of HSR-TDMA at the most.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yun, Chang Ho photo

Yun, Chang Ho
해양공공디지털연구본부
Read more

Altmetrics

Total Views & Downloads

BROWSE