Detailed Information

Cited 12 time in webofscience Cited 13 time in scopus
Metadata Downloads

Nonparametric approach for uncertainty-based multidisciplinary design optimization considering limited data

Full metadata record
DC Field Value Language
dc.contributor.authorCho, Su-gil-
dc.contributor.authorJang, Junyong-
dc.contributor.authorKim, Shinyu-
dc.contributor.authorPark, Sanghyun-
dc.contributor.authorLee, Tae Hee-
dc.contributor.authorLee, Minuk-
dc.contributor.authorChoi, Jong-Su-
dc.contributor.authorKim, Hyung-Woo-
dc.contributor.authorHong, Sup-
dc.date.accessioned2021-08-03T04:31:58Z-
dc.date.available2021-08-03T04:31:58Z-
dc.date.issued2016-12-
dc.identifier.issn1615-147X-
dc.identifier.issn1615-1488-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/643-
dc.description.abstractUncertainty-based multidisciplinary design optimization (UMDO) has been widely acknowledged as an advanced methodology to address competing objectives and reliable constraints of complex systems by coupling relationship of disciplines involved in the system. UMDO process consists of three parts. Two parts are to define the system with uncertainty and to formulate the design optimization problem. The third part is to quantitatively analyze the uncertainty of the system output considering the uncertainty propagation in the multidiscipline analysis. One of the major issues in the UMDO research is that the uncertainty propagation makes uncertainty analysis difficult in the complex system. The conventional methods are based on the parametric approach could possibly cause the error when the parametric approach has ill-estimated distribution because data is often insufficient or limited. Therefore, it is required to develop a nonparametric approach to directly use data. In this work, the nonparametric approach for uncertainty-based multidisciplinary design optimization considering limited data is proposed. To handle limited data, three processes are also adopted. To verify the performance of the proposed method, mathematical and engineering examples are illustrated.-
dc.format.extent18-
dc.language영어-
dc.language.isoENG-
dc.publisherSPRINGER-
dc.titleNonparametric approach for uncertainty-based multidisciplinary design optimization considering limited data-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1007/s00158-016-1540-0-
dc.identifier.scopusid2-s2.0-84978087176-
dc.identifier.wosid000391422800020-
dc.identifier.bibliographicCitationSTRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, v.54, no.6, pp 1671 - 1688-
dc.citation.titleSTRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION-
dc.citation.volume54-
dc.citation.number6-
dc.citation.startPage1671-
dc.citation.endPage1688-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.subject.keywordPlusROBUST OPTIMIZATION-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusTOLERANCES-
dc.subject.keywordPlusMOTION-
dc.subject.keywordAuthorAkaike information criterion-
dc.subject.keywordAuthorKolmogorov-Smirnov test-
dc.subject.keywordAuthorLimited data-
dc.subject.keywordAuthorNonparametric approach-
dc.subject.keywordAuthorReliability-based design optimization-
dc.subject.keywordAuthorUncertainty-based multidisciplinary design optimization-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Jong Su photo

Choi, Jong Su
해양공공디지털연구본부
Read more

Altmetrics

Total Views & Downloads

BROWSE