Gap size effect on the tribological characteristics of the roller for deep-sea mining robot
- Authors
- Oh, Jae-Won; Jung, Jung-Yeul; Kim, Hyung-Woo; Hong, Sup; Sung, Ki-Young; Bae, Dae-Sung
- Issue Date
- 2017
- Publisher
- TAYLOR & FRANCIS INC
- Keywords
- Deep-sea mining robot; effective viscosity; gap size effect; tribological characteristics
- Citation
- MARINE GEORESOURCES & GEOTECHNOLOGY, v.35, no.1, pp 120 - 126
- Pages
- 7
- Journal Title
- MARINE GEORESOURCES & GEOTECHNOLOGY
- Volume
- 35
- Number
- 1
- Start Page
- 120
- End Page
- 126
- URI
- https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/640
- DOI
- 10.1080/1064119X.2015.1114544
- ISSN
- 1064-119X
1521-0618
- Abstract
- To design the deep-sea mining robot, it is essential to analyze the tribological characteristics of its roller. In this study, we introduced the dynamic simulation model to analyze the tribological characteristics of the roller for deep-sea mining robot, considering the temperature, viscosity, viscous damping force, and gap size between the inner and outer rib seals. Effective viscosity changes with gap size in micro/nanoscale while the effective viscosity is equal to the kinematic viscosity in macroscale. For the stable operation of the roller, the effective viscosity must be less than the critical viscosity. As the gap size decreases, the effective viscosity increases while the critical viscosity decreases. This study shows that the gap size between the inner and outer rib seals of roller is the most dominant factor in designing the roller for deep-sea mining robot to use at relatively low temperatures that are found in the deep-sea environments.
- Files in This Item
-
- Appears in
Collections - 해양공공디지털연구본부 > 해사안전·환경연구센터 > Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.