Evaluation of the Two Phase Pressure Drop during the CO2-N2 Mixture Pipeline Transport
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 조맹익 | - |
dc.contributor.author | 허철 | - |
dc.contributor.author | 강성길 | - |
dc.contributor.author | 백종화 | - |
dc.date.accessioned | 2021-12-08T15:40:29Z | - |
dc.date.available | 2021-12-08T15:40:29Z | - |
dc.date.issued | 20141009 | - |
dc.identifier.uri | https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/4458 | - |
dc.description.abstract | Captured CO2 mixture for sequestration purpose can contain impurities such as N2, NOx, SOx, O2, H2O, H2, H2S, Ar. Such impurities affect the critical temperature and pressure, density, viscosity, saturation temperature-pressure line, etc. Among the impurities, N2 can affect the CO2 stream properties largely cause of the low boiling point and high specific volume, so a small ratio of N2 inflow might change the flow pattern of CO2 stream from single phase to two phase flow. To understand the flow behavior of two phase CO2 stream with N2 impurity, experimental investigations should be carried out and compared with existing correlation to figure out the accuracy of correlations. In this study we designed and installed an experimental facility to simulate the two phase flow behavior of CO2-N2 mixture during the pipeline transportation. The test section is composed of a single 6 meter STS304 tube with inner diameter of 3.8608mm with inlet absolute pressure transmitter and inlet-outlet differential pressure transmitter. Test condition was 21 ℃ and 85 bar with varying N2 impurity ratio. In this study the two-phase flow pressure drop data of CO2-N2 mixture flow are compared with correlations of Lockhart-Martinelli, Zhang et al, and Misima & Hibiki. Among three candidate correlations Mishima & Hibiki correlation showed the best accuracy. All of three correlations showed rather low accuracy, but it might be from the reason thamong the impurities, N2 can affect the CO2 stream properties largely cause of the low boiling point and high specific volume, so a small ratio of N2 inflow might change the flow pattern of CO2 stream from single phase to two phase flow. To understand the flow behavior of two phase CO2 stream with N2 impurity, experimental investigations should be carried out and compared with existing correlation to figure out the accuracy of correlations. In this study we designed and installed an experimental facility to simulate the two phase flow behavior of CO2-N2 mixture during the pipeline transportation. The test section is composed of a single 6 meter STS304 tube with inner diameter of 3.8608mm with inlet absolute pressure transmitter and inlet-outlet differential pressure transmitter. Test condition was 21 ℃ and 85 bar with varying N2 impurity ratio. In this study the two-phase flow pressure drop data of CO2-N2 mixture flow are compared with correlations of Lockhart-Martinelli, Zhang et al, and Misima & Hibiki. Among three candidate correlations Mishima & Hibiki correlation showed the best accuracy. All of three correlations showed rather low accuracy, but it might be from the reason tha | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.title | Evaluation of the Two Phase Pressure Drop during the CO2-N2 Mixture Pipeline Transport | - |
dc.title.alternative | Evaluation of the Two Phase Pressure Drop during the CO2-N2 Mixture Pipeline Transport | - |
dc.type | Conference | - |
dc.citation.title | International Conference on greenhouse gas technologies 12 | - |
dc.citation.volume | 1 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 1 | - |
dc.citation.conferenceName | International Conference on greenhouse gas technologies 12 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(34103) 대전광역시 유성구 유성대로1312번길 32042-866-3114
COPYRIGHT 2021 BY KOREA RESEARCH INSTITUTE OF SHIPS & OCEAN ENGINEERING. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.