Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Optimal determination of force field parameters for reduced molecular dynamics model

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Hyun-Seok-
dc.contributor.authorKim, Jae-Hyun-
dc.contributor.authorCha, Song-Hyun-
dc.contributor.authorCho, Seonho-
dc.date.accessioned2021-08-03T04:23:38Z-
dc.date.available2021-08-03T04:23:38Z-
dc.date.issued2019-03-
dc.identifier.issn0010-4655-
dc.identifier.issn1879-2944-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/349-
dc.description.abstractUsing a gradient-based optimization method, the time-consuming atomistic model of substrate is replaced by computationally efficient Lennard-Jones (L-J) potential walls whose parameters are determined to appropriately represent the interactions between the nanoparticles and the substrate. To obtain the required design sensitivity with respect to design variables for the constant temperature molecular dynamics (MD) simulations that use the Nose-Hoover thermostat, the finite difference method is impractical due to the huge amount of computational costs. Thus, we developed an adjoint design sensitivity analysis (DSA) method that is efficient for the system of many design variables. In numerical examples, we replace the complicated and time-consuming silicate structure to a multiple layer model of L-J potential wall, through the design optimization that includes the design variables of epsilon, sigma, and the positions of each layer. The objective is to minimize the squared difference of time averaged performance between the full and the reduced models during the whole time span. The proposed method could lead to a significant reduction of computational costs, together with comparable outcomes from MD simulations. (C) 2018 Elsevier B.V. All rights reserved.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER SCIENCE BV-
dc.titleOptimal determination of force field parameters for reduced molecular dynamics model-
dc.typeArticle-
dc.publisher.location네덜란드-
dc.identifier.doi10.1016/j.cpc.2018.10.019-
dc.identifier.scopusid2-s2.0-85057184454-
dc.identifier.wosid000458227100009-
dc.identifier.bibliographicCitationCOMPUTER PHYSICS COMMUNICATIONS, v.236, pp 86 - 94-
dc.citation.titleCOMPUTER PHYSICS COMMUNICATIONS-
dc.citation.volume236-
dc.citation.startPage86-
dc.citation.endPage94-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.subject.keywordPlusEMBEDDED-ATOM-METHOD-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusPOTENTIALS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusCONFIGURATION-
dc.subject.keywordPlusVAN-
dc.subject.keywordPlusDESIGN SENSITIVITY-ANALYSIS-
dc.subject.keywordPlusNONLINEAR TRANSIENT DYNAMICS-
dc.subject.keywordAuthorGradient-based optimization-
dc.subject.keywordAuthorAdjoint design sensitivity-
dc.subject.keywordAuthorMolecular dynamics-
dc.subject.keywordAuthorNVT ensemble-
dc.subject.keywordAuthorGold nanoparticle-
dc.subject.keywordAuthorMica substrate-
Files in This Item
There are no files associated with this item.
Appears in
Collections
친환경해양개발연구본부 > 친환경연료추진연구센터 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyun Seok photo

Kim, Hyun Seok
친환경해양개발연구본부 (친환경연료추진연구센터)
Read more

Altmetrics

Total Views & Downloads

BROWSE