Gas Sensor by Direct Growth and Functionalization of Metal Oxide/Metal Sulfide Core-Shell Nanowires on Flexible Substrates
- Authors
- Yang, Daejong; Cho, Incheol; Kim, Donghwan; Lim, Mi Ae; Li, Zhiyong; Ok, Jong G.; Lee, Moonjin; Park, Inkyu
- Issue Date
- 10-7월-2019
- Publisher
- AMER CHEMICAL SOC
- Keywords
- local synthesis; surface functionalization; flexible sensor; gas sensor; semiconductor nanowire
- Citation
- ACS APPLIED MATERIALS & INTERFACES, v.11, no.27, pp 24298 - 24307
- Pages
- 10
- Journal Title
- ACS APPLIED MATERIALS & INTERFACES
- Volume
- 11
- Number
- 27
- Start Page
- 24298
- End Page
- 24307
- URI
- https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/335
- DOI
- 10.1021/acsami.9b06951
- ISSN
- 1944-8244
1944-8252
- Abstract
- We have developed a novel fabrication method for flexible gas sensors for toxic gases based on sequential wet chemical reaction. In specific, zinc oxide (ZnO) nanowires were locally synthesized and directly integrated on a flexible polymer substrate using localized hydrothermal synthesis methods and their surfaces were selectively functionalized with palladium (Pd) nanoparticles using a liquid phase deposition process. Because the entire process is conducted at a low temperature in a mild precursor solution, it can be applied for flexible substrates. Furthermore, the surface of ZnO nanowires was sulfurized by hydrogen sulfide (H2S) gas to form zinc oxide/zinc sulfide (ZnO/ZnS) core shell nanowires for stable sensing of H2S gas. The locally synthesized ZnO/ZnS core shell nanowires enable an ultracompact-sized device, and Pd nanoparticles improve the sensing performance and reduce the operating temperature (200 degrees C). The device shows a high sensitivity [(G(gas) - G(air))/G(air). X 100% = 4491% to 10 ppm], fast response (response/recovery time <100 s) to hydrogen sulfide, and outstanding selectivity (>100 times) to other toxic gases (e.g., carbon monoxide, acetone, ethanol, and toluene). Moreover, vertically synthesized nanowires provide a long bending path, which reduces the mechanical stresses on the structure. The devices showed stable gas sensing performance under 9 mm positive radius of curvature and 5 mm negative radius of curvature. The mechanical robustness of the device was also verified by numerical simulations which showed dramatic decrease of maximum stress and strain to 4.2 and 5.0%, respectively.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 해양공공디지털연구본부 > 해사안전·환경연구센터 > Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.