Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

수중에서의 특징점 매칭을 위한 CNN기반 Opti-Acoustic변환

Full metadata record
DC Field Value Language
dc.contributor.author장혜수-
dc.contributor.author이영준-
dc.contributor.author김기섭-
dc.contributor.author김아영-
dc.date.accessioned2021-08-03T04:22:43Z-
dc.date.available2021-08-03T04:22:43Z-
dc.date.issued2020-
dc.identifier.issn1975-6291-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/296-
dc.description.abstractIn this paper, we introduce the methodology that utilizes deep learning-based front-end to enhance underwater feature matching. Both optical camera and sonar are widely applicable sensors in underwater research, however, each sensor has its own weaknesses, such as light condition and turbidity for the optic camera, and noise for sonar. To overcome the problems, we proposed the opti-acoustic transformation method. Since feature detection in sonar image is challenging, we converted the sonar image to an optic style image. Maintaining the main contents in the sonar image, CNN-based style transfer method changed the style of the image that facilitates feature detection. Finally, we verified our result using cosine similarity comparison and feature matching against the original optic image.-
dc.format.extent7-
dc.language한국어-
dc.language.isoKOR-
dc.publisher한국로봇학회-
dc.title수중에서의 특징점 매칭을 위한 CNN기반 Opti-Acoustic변환-
dc.title.alternativeCNN-based Opti-Acoustic Transformation for Underwater Feature Matching-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.7746/jkros.2020.15.1.001-
dc.identifier.bibliographicCitation로봇학회 논문지, v.15, no.1, pp 1 - 7-
dc.citation.title로봇학회 논문지-
dc.citation.volume15-
dc.citation.number1-
dc.citation.startPage1-
dc.citation.endPage7-
dc.identifier.kciidART002560301-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorSonar-
dc.subject.keywordAuthorDeep Learning-
dc.subject.keywordAuthorUnderwater-
dc.subject.keywordAuthorFeature Matching-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE