Detailed Information

Cited 11 time in webofscience Cited 13 time in scopus
Metadata Downloads

Autonomous collision detection and avoidance for ARAGON USV: Development and field tests

Full metadata record
DC Field Value Language
dc.contributor.authorHan, Jungwook-
dc.contributor.authorCho, Yonghoon-
dc.contributor.authorKim, Jonghwi-
dc.contributor.authorKim, Jinwhan-
dc.contributor.authorSon, Nam-sun-
dc.contributor.authorKim, Sun Young-
dc.date.accessioned2021-08-03T04:21:08Z-
dc.date.available2021-08-03T04:21:08Z-
dc.date.issued2020-09-
dc.identifier.issn1556-4959-
dc.identifier.issn1556-4967-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/217-
dc.description.abstractThis study addresses the development of algorithms for multiple target detection and tracking in the framework of sensor fusion and its application to autonomous navigation and collision avoidance systems for the unmanned surface vehicle (USV) Aragon. To provide autonomous navigation capabilities, various perception sensors such as radar, lidar, and cameras have been mounted on the USV platform and automatic ship detection algorithms are applied to the sensor measurements. The relative position information between the USV and nearby objects is obtained to estimate the motion of the target objects in a sensor-level tracking filter. The estimated motion information from the individual tracking filters is then combined in a central-level fusion tracker to achieve persistent and reliable target tracking performance. For automatic ship collision avoidance, the combined track data are used as obstacle information, and appropriate collision avoidance maneuvers are designed and executed in accordance with the international regulations for preventing collisions at sea (COLREGs). In this paper, the development processes of the vehicle platform and the autonomous navigation algorithms are described, and the results of field experiments are presented and discussed.-
dc.format.extent16-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-
dc.titleAutonomous collision detection and avoidance for ARAGON USV: Development and field tests-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1002/rob.21935-
dc.identifier.scopusid2-s2.0-85078732820-
dc.identifier.wosid000508366900001-
dc.identifier.bibliographicCitationJOURNAL OF FIELD ROBOTICS, v.37, no.6, pp 987 - 1002-
dc.citation.titleJOURNAL OF FIELD ROBOTICS-
dc.citation.volume37-
dc.citation.number6-
dc.citation.startPage987-
dc.citation.endPage1002-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaRobotics-
dc.relation.journalWebOfScienceCategoryRobotics-
dc.subject.keywordPlusTARGET TRACKING-
dc.subject.keywordPlusSHIP DETECTION-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusSURVEILLANCE-
dc.subject.keywordPlusNAVIGATION-
dc.subject.keywordPlusRECONSTRUCTION-
dc.subject.keywordPlusEXTRACTION-
dc.subject.keywordPlusSENSORS-
dc.subject.keywordPlusIMAGES-
dc.subject.keywordPlusFUSION-
dc.subject.keywordAuthorautonomous navigation-
dc.subject.keywordAuthormultiple target tracking-
dc.subject.keywordAuthorsensor fusion-
dc.subject.keywordAuthorunmanned surface vehicle-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Sun Young photo

Kim, Sun Young
해양공공디지털연구본부
Read more

Altmetrics

Total Views & Downloads

BROWSE