Numerically extrapolated discrete layer-peeling algorithm for synthesis of nonuniform fiber Bragg gratings
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi, Y. | - |
dc.contributor.author | Chun, J. | - |
dc.contributor.author | Bae, J. | - |
dc.date.accessioned | 2021-08-03T05:43:38Z | - |
dc.date.available | 2021-08-03T05:43:38Z | - |
dc.date.issued | 2011 | - |
dc.identifier.issn | 1094-4087 | - |
dc.identifier.uri | https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/1116 | - |
dc.description.abstract | The discrete layer-peeling algorithm (DLPA) requires to discretize the continuous medium into discrete reflectors to synthesize nonuniform fiber Bragg gratings (FBG), and the discretization step of this discrete model should be sufficiently small for synthesis with high accuracy. However, the discretization step cannot be made arbitrarily small to decrease the discretization error, because the number of multiplications needed with the DLPA is proportional to the inverse square of the layer thickness. We propose a numerically extrapolated time domain DLPA (ETDLPA) to resolve this tradeoff between the numerical accuracy and the computational complexity. The accuracy of the proposed ETDLPA is higher than the conventional time domain DLPA (TDLPA) by an order of magnitude or more, with little computational overhead. To be specific, the computational efficiency of the ETDLPA is achieved through numerical extrapolation, and each addition of the extrapolation depth improves the order of accuracy by one. Therefore, the ETDLPA provides us with computationally more efficient and accurate methodology for the nonuniform FBG synthesis than the TDLPA. ? 2011 Optical Society of America. | - |
dc.format.extent | 13 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Optical Society of American (OSA) | - |
dc.title | Numerically extrapolated discrete layer-peeling algorithm for synthesis of nonuniform fiber Bragg gratings | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1364/OE.19.008254 | - |
dc.identifier.scopusid | 2-s2.0-79955441843 | - |
dc.identifier.bibliographicCitation | Optics Express, v.19, no.9, pp 8254 - 8266 | - |
dc.citation.title | Optics Express | - |
dc.citation.volume | 19 | - |
dc.citation.number | 9 | - |
dc.citation.startPage | 8254 | - |
dc.citation.endPage | 8266 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Algorithms | - |
dc.subject.keywordPlus | Computational complexity | - |
dc.subject.keywordPlus | Computational efficiency | - |
dc.subject.keywordPlus | Extrapolation | - |
dc.subject.keywordPlus | Fiber optic components | - |
dc.subject.keywordPlus | Fiber optic sensors | - |
dc.subject.keywordPlus | Computational overheads | - |
dc.subject.keywordPlus | Continuous medium | - |
dc.subject.keywordPlus | Discrete layers | - |
dc.subject.keywordPlus | Discrete models | - |
dc.subject.keywordPlus | Discretization errors | - |
dc.subject.keywordPlus | Discretizations | - |
dc.subject.keywordPlus | Fiber Bragg grating (fbg) | - |
dc.subject.keywordPlus | Layer thickness | - |
dc.subject.keywordPlus | Nonuniform | - |
dc.subject.keywordPlus | Numerical accuracy | - |
dc.subject.keywordPlus | Numerical extrapolation | - |
dc.subject.keywordPlus | Order of accuracy | - |
dc.subject.keywordPlus | Order of magnitude | - |
dc.subject.keywordPlus | Time domain | - |
dc.subject.keywordPlus | Fiber Bragg gratings | - |
dc.subject.keywordPlus | algorithm | - |
dc.subject.keywordPlus | article | - |
dc.subject.keywordPlus | computer aided design | - |
dc.subject.keywordPlus | computer simulation | - |
dc.subject.keywordPlus | equipment design | - |
dc.subject.keywordPlus | instrumentation | - |
dc.subject.keywordPlus | methodology | - |
dc.subject.keywordPlus | nonlinear system | - |
dc.subject.keywordPlus | refractometry | - |
dc.subject.keywordPlus | reproducibility | - |
dc.subject.keywordPlus | theoretical model | - |
dc.subject.keywordPlus | Algorithms | - |
dc.subject.keywordPlus | Computer Simulation | - |
dc.subject.keywordPlus | Computer-Aided Design | - |
dc.subject.keywordPlus | Equipment Design | - |
dc.subject.keywordPlus | Models, Theoretical | - |
dc.subject.keywordPlus | Nonlinear Dynamics | - |
dc.subject.keywordPlus | Refractometry | - |
dc.subject.keywordPlus | Reproducibility of Results | - |
dc.subject.keywordAuthor | discrete layer peeling algorit | - |
dc.subject.keywordAuthor | numerical extrapolation | - |
dc.subject.keywordAuthor | numerical accuracy | - |
dc.subject.keywordAuthor | computational complexity | - |
dc.subject.keywordAuthor | inverse scattering | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(34103) 대전광역시 유성구 유성대로1312번길 32042-866-3114
COPYRIGHT 2021 BY KOREA RESEARCH INSTITUTE OF SHIPS & OCEAN ENGINEERING. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.