Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

생태 독성 센서를 활용한 수질 자동 측정 시스템에서 AI을 활용한 결측값 예측 및 신뢰성 있는 데이터 확보를 위한 연구

Full metadata record
DC Field Value Language
dc.contributor.author오진덕-
dc.contributor.author이득재-
dc.contributor.author최성환-
dc.contributor.author배성민-
dc.contributor.author김용명-
dc.contributor.author최훈-
dc.contributor.author강원수-
dc.contributor.author이문진-
dc.date.accessioned2025-01-08T07:30:28Z-
dc.date.available2025-01-08T07:30:28Z-
dc.date.issued2024-11-28-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/10834-
dc.title생태 독성 센서를 활용한 수질 자동 측정 시스템에서 AI을 활용한 결측값 예측 및 신뢰성 있는 데이터 확보를 위한 연구-
dc.title.alternativeA Study on the Prediction of Missing Values and Ensuring Reliable Data Using AI in Water Quality Automatic Measurement Systems Utilizing Ecotoxicity Sensors-
dc.typeConference-
dc.citation.conferenceName2024년도 (사)해양환경안전학회 추계학술발표회-
dc.citation.conferencePlace대한민국-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양공공디지털연구본부 > 해사안전·환경연구센터 > Conference Papers

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Won Soo photo

Kang, Won Soo
해양공공디지털연구본부 (해사안전·환경연구센터)
Read more

Altmetrics

Total Views & Downloads

BROWSE