Numerical Simulation of Fluid Flow and Heat Transfer of Supercritical CO2 in Micro-porous Media
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 최항석 | - |
dc.contributor.author | 박훈채 | - |
dc.contributor.author | 허철 | - |
dc.contributor.author | 강성길 | - |
dc.date.accessioned | 2021-08-03T05:43:06Z | - |
dc.date.available | 2021-08-03T05:43:06Z | - |
dc.date.issued | 2011-04-11 | - |
dc.identifier.uri | https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/1069 | - |
dc.description.abstract | International attention has been considerably paid for the technology of CO2 capture and storage (CCS) these days because of global warming. In line with the fact that carbon dioxide capture and storage (CCS) technology has been regarded as one of the most promising option to mitigate the climate change and global warming, we have started a 10- year R&D project on CO2 storage in marine geological structure. We carried out relevant studies, which cover the initial survey of potentially suitable marine geological structure for CO2 storage site, monitoring of the stored CO2 behavior, basic design for CO2 transport and storage process including onshore/offshore plant and assessment of potential environmental risk related to CO2 leakage in storage site. The purpose of this paper is to model and simulate a CO2 flow and its heat transfer characteristics in a storage site for more accurate evaluation of the safety of CO2 storage process. Among CCS technologies, the prediction of CO2 behavior in underground is very critical for CO2 storage design with safety. As a part of the storage design, a micro pore-scale model was developed to mimic real porous structure and CFD (computational fluid dynamics) was applied to calculate the CO2 flow and thermal fields in the micro pore-scale porous structure. Varying CO2 injection conditions, the behavior of the CO2 flow was calculated. Especially, physical cod as one of the most promising option to mitigate the climate change and global warming, we have started a 10- year R&D project on CO2 storage in marine geological structure. We carried out relevant studies, which cover the initial survey of potentially suitable marine geological structure for CO2 storage site, monitoring of the stored CO2 behavior, basic design for CO2 transport and storage process including onshore/offshore plant and assessment of potential environmental risk related to CO2 leakage in storage site. The purpose of this pape | - |
dc.format.extent | 8 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Elsevier | - |
dc.title | Numerical Simulation of Fluid Flow and Heat Transfer of Supercritical CO2 in Micro-porous Media | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.bibliographicCitation | Energy Procedia, v.4, no.1, pp 3786 - 3793 | - |
dc.citation.title | Energy Procedia | - |
dc.citation.volume | 4 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 3786 | - |
dc.citation.endPage | 3793 | - |
dc.description.isOpenAccess | N | - |
dc.subject.keywordAuthor | carbon dioxide capture and sto | - |
dc.subject.keywordAuthor | computational fluid dynamics | - |
dc.subject.keywordAuthor | heat transfer | - |
dc.subject.keywordAuthor | micro-porous media | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(34103) 대전광역시 유성구 유성대로1312번길 32042-866-3114
COPYRIGHT 2021 BY KOREA RESEARCH INSTITUTE OF SHIPS & OCEAN ENGINEERING. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.