Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Improving atmospheric correction for KOMPSAT-3A by optimizing the 6SV look-up table

Full metadata record
DC Field Value Language
dc.contributor.authorJeong, Daeseong-
dc.contributor.authorSeong, Noh-Hun-
dc.contributor.authorChoi, Sungwon-
dc.contributor.authorSim, Suyoung-
dc.contributor.authorWoo, Jongho-
dc.contributor.authorKim, Nayeon-
dc.contributor.authorPark, Sungwoo-
dc.contributor.authorHan, Kyung-Soo-
dc.date.accessioned2025-01-08T06:30:21Z-
dc.date.available2025-01-08T06:30:21Z-
dc.date.issued2024-05-
dc.identifier.issn2150-704X-
dc.identifier.issn2150-7058-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/10627-
dc.description.abstractWe present techniques for enhancing the look-up table (LUT) method, using the Second Simulation of a Satellite Signal in the Solar Spectrum Vector (6 SV) model for atmospheric correction (AC) and accurate surface reflectance (SR) computation across the multispectral (MS) KOMPSAT-3A channels. We improved the LUT-based SR accuracy using three interpolation and prediction methods for AC coefficients: minimum curvature surface (MCS), six-dimensional linear interpolation (6D), and a deep neural network (DNN). When assessed based on the solar zenith angle (SZA) and aerosol optical depth (AOD), MCS had limitations interpolating atmospheric effects, particularly at shorter wavelengths. The DNN method had high predictive ability for atmospheric effect variability with an increased SZA, but struggled to predict minor changes at low SZAs. In comparison, the 6D method, operating in real-time and considering all AC input variables, consistently retrieved high-quality SR across all MS channels. Our findings offer insights into each method's strengths and limitations, guiding future remote sensing research and applications.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherTAYLOR & FRANCIS LTD-
dc.titleImproving atmospheric correction for KOMPSAT-3A by optimizing the 6SV look-up table-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1080/2150704X.2024.2343130-
dc.identifier.scopusid2-s2.0-85191090976-
dc.identifier.wosid001206283100001-
dc.identifier.bibliographicCitationREMOTE SENSING LETTERS, v.15, no.5, pp 514 - 525-
dc.citation.titleREMOTE SENSING LETTERS-
dc.citation.volume15-
dc.citation.number5-
dc.citation.startPage514-
dc.citation.endPage525-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaRemote Sensing-
dc.relation.journalResearchAreaImaging Science & Photographic Technology-
dc.relation.journalWebOfScienceCategoryRemote Sensing-
dc.relation.journalWebOfScienceCategoryImaging Science & Photographic Technology-
dc.subject.keywordPlusRADIATIVE-TRANSFER CODE-
dc.subject.keywordPlusSATELLITE DATA-
dc.subject.keywordPlusPART I-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusIMAGERY-
dc.subject.keywordPlusMODIS-
dc.subject.keywordAuthorAtmospheric correction-
dc.subject.keywordAuthorradiative transfer-
dc.subject.keywordAuthorKOMPSAT-3A-
dc.subject.keywordAuthor6SV-
dc.subject.keywordAuthorlook-up table-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양공공디지털연구본부 > 해사디지털서비스연구센터 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE