Thermal conductivity measurement of methanol-based nanofluids with Al 2O 3 and SiO 2 nanoparticles
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pang, C. | - |
dc.contributor.author | Jung, J.-Y. | - |
dc.contributor.author | Lee, J.W. | - |
dc.contributor.author | Kang, Y.T. | - |
dc.date.accessioned | 2021-08-03T05:42:57Z | - |
dc.date.available | 2021-08-03T05:42:57Z | - |
dc.date.issued | 2012 | - |
dc.identifier.issn | 0017-9310 | - |
dc.identifier.issn | 1879-2189 | - |
dc.identifier.uri | https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/1051 | - |
dc.description.abstract | In this study, the methanol-based nanofluids with Al 2O 3 and SiO 2 nanoparticles are prepared by dispersing nanoparticles in pure methanol using an ultrasonic equipment. The main objective of this paper is to measure the thermal conductivity of the methanol-based nanofluids. We have also measured the zeta potential, particle size and Tyndall effect for the present nanofluids. The transient hot-wire method is applied for measuring the thermal conductivity of methanol-based nanofluids. The measurement uncertainty in repeatability is obtained as 1.95% for deionized (DI) water and 1.34% for pure methanol, respectively. The effective thermal conductivity of methanol-based nanofluids is measured at a temperature of 293.15 K. The results show that the thermal conductivity increases with an increase of the nanoparticle volume fraction, and the enhancement is observed to be 10.74% and 14.29% over the basefluid at the volume fraction of 0.5vol% for Al 2O 3 and SiO 2 nanoparticles, respectively. Clustering of nanoparticles is considered to be the main reason for the thermal conductivity enhancement. ? 2012 Elsevier Ltd. All rights reserved. | - |
dc.format.extent | 6 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.title | Thermal conductivity measurement of methanol-based nanofluids with Al 2O 3 and SiO 2 nanoparticles | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1016/j.ijheatmasstransfer.2012.05.048 | - |
dc.identifier.scopusid | 2-s2.0-84864290116 | - |
dc.identifier.bibliographicCitation | International Journal of Heat and Mass Transfer, v.55, no.21-22, pp 5597 - 5602 | - |
dc.citation.title | International Journal of Heat and Mass Transfer | - |
dc.citation.volume | 55 | - |
dc.citation.number | 21-22 | - |
dc.citation.startPage | 5597 | - |
dc.citation.endPage | 5602 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Clustering | - |
dc.subject.keywordPlus | Effective thermal conductivity | - |
dc.subject.keywordPlus | Measurement uncertainty | - |
dc.subject.keywordPlus | Nanofluids | - |
dc.subject.keywordPlus | Thermal conductivity enhancement | - |
dc.subject.keywordPlus | Thermal conductivity measurements | - |
dc.subject.keywordPlus | Transient hot wire method | - |
dc.subject.keywordPlus | Tyndall | - |
dc.subject.keywordPlus | Aluminum | - |
dc.subject.keywordPlus | Deionized water | - |
dc.subject.keywordPlus | Methanol | - |
dc.subject.keywordPlus | Nanofluidics | - |
dc.subject.keywordPlus | Nanoparticles | - |
dc.subject.keywordPlus | Particle size | - |
dc.subject.keywordPlus | Thermal conductivity | - |
dc.subject.keywordPlus | Uncertainty analysis | - |
dc.subject.keywordPlus | Zeta potential | - |
dc.subject.keywordPlus | Thermal conductivity of liquids | - |
dc.subject.keywordAuthor | Clustering | - |
dc.subject.keywordAuthor | Methanol-based nanofluids | - |
dc.subject.keywordAuthor | Particle size | - |
dc.subject.keywordAuthor | Thermal conductivity | - |
dc.subject.keywordAuthor | Zeta potential | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(34103) 대전광역시 유성구 유성대로1312번길 32042-866-3114
COPYRIGHT 2021 BY KOREA RESEARCH INSTITUTE OF SHIPS & OCEAN ENGINEERING. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.