Detailed Information

Cited 0 time in webofscience Cited 110 time in scopus
Metadata Downloads

Vision-based object detection and tracking for autonomous navigation of underwater robots

Full metadata record
DC Field Value Language
dc.contributor.authorLee, D.-
dc.contributor.authorKim, G.-
dc.contributor.authorKim, D.-
dc.contributor.authorMyung, H.-
dc.contributor.authorChoi, H.-T.-
dc.date.accessioned2021-08-03T05:42:54Z-
dc.date.available2021-08-03T05:42:54Z-
dc.date.issued2012-
dc.identifier.issn0029-8018-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/1043-
dc.description.abstractUnderwater robots have been an emerging research area being at the intersection of the field of robotics and oceanic engineering. Their applications include environmental monitoring, oceanographic mapping, and infrastructure inspections in deep sea. In performing these tasks, the ability of autonomous navigation is the key to a success, especially with the limited communications in underwater environments. Considering the highly dynamic and three-dimensional environments, the autonomous navigation technologies including path planning and tracking have been one of the interesting but challenging tasks in the field of study. Cameras have not been at the center of attention as an underwater sensor due to the limited detection ranges and the poor visibility. Use of visual data from cameras, however, is still an attractive method for underwater sensing and it is especially effective in the close range detections. In this paper, the vision-based object detection and tracking techniques for underwater robots have been studied in depth. In order to overcome the limitations of cameras and to make use of the full advantages of image data, a number of approaches have been tested. The topics include color restoration algorithm for the degraded underwater images, detection and tracking methods for underwater target objects. The feasibilities of the proposed algorithms have been demonstrated in the experiments with an underwater robot platform and the results have been analyzed both qualitatively and quantitatively. ? 2012 Elsevier Ltd. All rights reserved.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.titleVision-based object detection and tracking for autonomous navigation of underwater robots-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.oceaneng.2012.04.006-
dc.identifier.scopusid2-s2.0-84861161534-
dc.identifier.bibliographicCitationOcean Engineering, v.48, pp 59 - 68-
dc.citation.titleOcean Engineering-
dc.citation.volume48-
dc.citation.startPage59-
dc.citation.endPage68-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusAutonomous navigation-
dc.subject.keywordPlusClose range-
dc.subject.keywordPlusColor restoration-
dc.subject.keywordPlusDeep sea-
dc.subject.keywordPlusDetection and tracking-
dc.subject.keywordPlusDetection range-
dc.subject.keywordPlusEnvironmental Monitoring-
dc.subject.keywordPlusImage data-
dc.subject.keywordPlusLimited communication-
dc.subject.keywordPlusObject Detection-
dc.subject.keywordPlusObject Tracking-
dc.subject.keywordPlusOceanic engineering-
dc.subject.keywordPlusPoor visibility-
dc.subject.keywordPlusThree-dimensional environment-
dc.subject.keywordPlusUnderwater environments-
dc.subject.keywordPlusUnderwater image-
dc.subject.keywordPlusUnderwater robots-
dc.subject.keywordPlusUnderwater sensors-
dc.subject.keywordPlusUnderwater target-
dc.subject.keywordPlusUnderwater vision-
dc.subject.keywordPlusVision based-
dc.subject.keywordPlusVisual data-
dc.subject.keywordPlusAlgorithms-
dc.subject.keywordPlusCameras-
dc.subject.keywordPlusComputer vision-
dc.subject.keywordPlusImage reconstruction-
dc.subject.keywordPlusMotion planning-
dc.subject.keywordPlusNavigation-
dc.subject.keywordPlusNavigation systems-
dc.subject.keywordPlusObject recognition-
dc.subject.keywordPlusRobots-
dc.subject.keywordPlusTracking (position)-
dc.subject.keywordPlusAutonomous underwater vehicles-
dc.subject.keywordPlusalgorithm-
dc.subject.keywordPlusautonomous underwater vehicle-
dc.subject.keywordPlusdetection method-
dc.subject.keywordPlusenvironmental monitoring-
dc.subject.keywordPlusimage processing-
dc.subject.keywordPlusmapping-
dc.subject.keywordPlusmarine technology-
dc.subject.keywordPlusrobotics-
dc.subject.keywordPlussensor-
dc.subject.keywordPlustracking-
dc.subject.keywordPlusvision-
dc.subject.keywordAuthorObject detection-
dc.subject.keywordAuthorObject tracking-
dc.subject.keywordAuthorUnderwater image restoration-
dc.subject.keywordAuthorUnderwater robot-
dc.subject.keywordAuthorUnderwater vision-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Hyun Taek photo

Choi, Hyun Taek
지능형선박연구본부
Read more

Altmetrics

Total Views & Downloads

BROWSE